Vibration Damping Analysis of Lightweight Structures in Machine Tools
نویسندگان
چکیده
The dynamic behaviour of a machine tool (MT) directly influences the machining performance. The adoption of lightweight structures may reduce the effects of undesired vibrations and increase the workpiece quality. This paper aims to present and compare a set of hybrid materials that may be excellent candidates to fabricate the MT moving parts. The selected materials have high dynamic characteristics and capacity to dampen mechanical vibrations. In this way, starting from the kinematic model of a milling machine, this study evaluates a number of prototypes made of Al foam sandwiches (AFS), Al corrugated sandwiches (ACS) and composite materials reinforced by carbon fibres (CFRP). These prototypes represented the Z-axis ram of a commercial milling machine. The static and dynamical properties have been analysed by using both finite element (FE) simulations and experimental tests. The obtained results show that the proposed structures may be a valid alternative to the conventional materials of MT moving parts, increasing machining performance. In particular, the AFS prototype highlighted a damping ratio that is 20 times greater than a conventional ram (e.g., steel). Its application is particularly suitable to minimize unwanted oscillations during high-speed finishing operations. The results also show that the CFRP structure guarantees high stiffness with a weight reduced by 48.5%, suggesting effective applications in roughing operations, saving MT energy consumption. The ACS structure has a good trade-off between stiffness and damping and may represent a further alternative, if correctly evaluated.
منابع مشابه
Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding...
متن کاملI. INTRODUCTION HE development of mathematical models for the mechanism of damping along with techniques adopted to improve the damping capacity of layered structures for controlling the adverse effects of vibrations
The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such...
متن کاملMechanism of Damping in Welded Structures using Finite Element Approach
The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such...
متن کاملIntroducing a Lightweight Structural Model via Simulation of Vernacular “Pa Tu Pa” Arch
The knowledge of Iranian vernacular structures is based on geometry, and there is a possibility of recreating such structural patterns aimed at producing movable structures. The purpose of this research was to utilize the patterns of vernacular structures to provide a lightweight structural model. The questions raised included how to create various forms based on the structural history of any r...
متن کاملThe Effect of Soil Type on Seismic Response of Tall Telecommunication Towers with Random Vibration Analysis
Random vibration analysis of tall structures faces multiple problems due to the large number of elements and high degrees of freedom; that is why this type of analysis is mostly used in simple structures and low degrees of freedom. In the past two decades, changes have been occurred in this type of analysis to be used in complex structures and the large number of elements. Pseudo-Excitation Met...
متن کامل